Immobilization of stable thylakoid vesicles in conductive nanofibers by electrospinning.
نویسندگان
چکیده
Electrospun fibers consisting of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT/PSS) and poly(ethylene oxide) (PEO) have been used to successfully encapsulate and stabilize thylakoid membrane vesicles isolated from spinach. Light-driven electronic properties were measured. Fibers with immobilized thylakoids show higher electrical conductivity compared with fibers without thylakoids under white light conditions. This is attributed to the electron-generating photosynthetic reactions from the thylakoids. Electron and optical microscopy show the presence of thylakoid vesicles within the fibers using lipid-specific stains. After electrospinning into fibers, the thylakoid vesicles still exhibit an ability to produce a light-driven electron gradient, indicating that activity is preserved during the electrospinning process. These electrospun fibers provide an excellent example of incorporating photosynthetic function into an artificial system.
منابع مشابه
Production of Conductive PEDOT-Coated PVA-GO Composite Nanofibers
Electrically conductive nanofiber is well known as an excellent nanostructured material for its outstanding performances. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT)-coated polyvinyl alcohol-graphene oxide (PVA-GO)-conducting nanofibers were fabricated via a combined method using electrospinning and electropolymerization techniques. During electrospinning, the concentration of PVA-GO...
متن کاملA review on electrospun nanofibers for oral drug delivery
Nowadays, polymer nanofibers have gained attention due to remarkable characteristics such as high porosity and large surface area to volume ratio. Among their fabrication methods, electrospinning technique has been attracted as a simple and reproducible approach. It is a versatile, simple and cost-effective technique for the production of continuous nanofibers with acceptable characteristics su...
متن کاملPreservation of cell viability and protein conformation on immobilization within nanofibers via electrospinning functionalized yeast.
We investigate the immobilization of a model system of functionalized yeast that surface-display enhanced green fluorescent protein (eGFP) within chemically crosslinked polyvinyl alcohol (PVA) nanofibers. Yeast is incorporated into water insoluble nanofibrous materials by direct electrospinning with PVA followed by vapor phase chemical crosslinking of the polymer. Incorporation of yeast into th...
متن کاملAntibacterial Activity and Conductivity Properties of Nanocomposites based on Cellulose Acetate Nanofibers and Copper Nanoparticles
in this work, nanocomposites comprising copper nanoparticle in cellulose acetate (CA)matrices have been prepared. In this manner, Copper nanoparticles prepared by its saltreduced by sodium borohydride at various concentration. Then this nanoparticle solution wasmixed with polymer solution and electrospun by electrospinning device. The abovenanocomposite has been successfully detected by SEM, ED...
متن کاملPreparations, properties and applications of chitosan based nanofibers fabricated by electrospinning
Chitosan is soluble in most acids. The protonation of the amino groups on the chitosan backbone inhibits the electrospinnability of pure chitosan. Recently, electrospinning of nanofibers based on chitosan has been widely researched and numerous nanofibers containing chitosan have been prepared by decreasing the number of the free amino groups of chitosan as the nanofibiers have enormous possibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2011